
Slow Nodes Cost Your Users Valuable Resources.

Can You Find Them?

Ricky A. Kendall & Don Maxwell
National Center for Computational Sciences

Oak Ridge National Laboratory

Jeff Becklehimer & Cathy Willis
Cray Inc.

May 1, 2009

Abstract

Many High Performance Computing applications have a static load balance which is easy and cheap
to implement. When one or a few nodes are not performing properly this makes the whole code slow
down to the rate limiting performance of the slowest node. We describe the utilization of a coded called
Bugget which has been used on Catamount and the Cray Linux Environment to quickly identify these
nodes so they can be removed from the user pool until the next appropriate maintenance period.

KEYWORDS: System Diagnostics, Parallel Matrix Multiply

1 Introduction

High Performance Computing (HPC) algorithms are
inherently parallel today. In fact, most leadership
computational resources have multiple levels of con-
currency that must be managed by the programming
model used to implement those algorithms. With
the size and complexity of these systems having bad
hardware or hardware performing in less than an op-
timal fashion is a constant issue that must be mit-
igated. The hardware issues coupled with the soft-
ware complexity of implemented parallel algorithms
offers a significant challenge to the computational
science community for the development and utiliza-
tion of scientific applications.

Most software developers make a few assump-
tions to make progress toward their scientific goals
for simulation. These include:

• hardware gives correct results

• hardware is performing optimally

• compilers produce correct runnable binaries

• the computer is doing what I think it is doing.

We all know that these assumptions are a base for
making progress but that sometimes there are fail-
ures in each. For long running simulations we know
that round-off errors creep in and that the algo-
rithms we use have to be tolerant to those errors
or we have to correct for them. We expect that the
hardware we are using is performing as best as it can
given our description of our algorithm in a high level
programming language. Most computational scien-
tists have filed a compiler bug where incorrect code
is generated. Often half way through the process of
developing the reproducer for this bug we realize we
have made the mistake and the compiler did do what
we asked it to, but not always. Furthermore, opti-
mal performance is a nebulous and difficult dance
with the compiler and the myriad of compiler op-
tions as well as the necessary reformatting of the
high level language that we are using to implement
our algorithms.

In this work we attempt to verify the first two
assumptions above but based on the second two as-
sumptions. This is how most computational scien-

1

CUG 2009 Proceedings

tists interact with their computer resources. We
use the Fox and Hey algorithm [1] also known as
the broadcast multiply and roll algorithm for ma-
trix multiplication to determine a computed matrix
multiply based on defined matrices that allow us to
compare that result with the analytical result. This
gives us some assurance that the hardware is giv-
ing us the correct result. The same instance of ma-
trix multiplication is replicated across the various
nodes of the system and the timing information is
collected. Statistically we determine which nodes
are “bad” and identify them. Once nodes are iden-
tified we can either not use them in a batch job or
have the systems staff remove them from the avail-
able pool of nodes.

2 Bugget

Bugget was originally developed as a simple plat-
form for understanding programming model choices
for various parallel computing systems. It is based
on matrix multiply which is considered the “hello
world” program for parallel programs. The surface
to volume ratio is well suited for this in that there
is O(N3) work and O(N2) data movement. There
are roughly a 1/2 a mole of different parallel matrix
multiplication algorithms available [1-12] and there
are many implementation details that make one al-
gorithm more suitable than another. If you are using
a parallel system or programming model that won’t
allow you to scale a matrix multiplication algorithm
then there is a problem with that system or model.

2.1 What does Bugget do?

Since the main goal for Bugget was to explore char-
acteristics of a parallel computational system, the
algorithmic choice was not driven by the best per-
formance. We chose to use the Fox and Hey algo-
rithm [1] for the parallel matrix multiply. There is a
main driver that handles breaking up the processes
assigned to a given job into appropriate groups of
processors. In each group of processes the algorithm
is separately applied to arbitrarily defined matrices
of known quantities. The simple operation is:

Ci,j =
∑

k

Ai,kBk,j (1)

where A and B are defined as:

Ai,j = (a ∗ i+ b ∗ j + c)/rankA (2)

Bk,j = (d ∗ k + e ∗ j + f)/rankB (3)

Where a, b, c, d, e, and f are arbitrary constants.
Because the quantities are known it is easy to com-
pute what the result should be for Ci,j via equation
1. This “analytical result” can be compared to the
computed result via a parallel matrix multiply algo-
rithm. The difference between the computed C and
the analytical C should be zero:∑

i

∑
j

Canalytical
i,j − Ccomputed

i,j = 0 (4)

This difference norm gives a single number to check
the result of the parallel matrix multiply algorithm.
The generation of A, B and Canalytical are all O(N2)
and are very cheap to compute. With this we now
have a handle on the first assumption listed above
in section 1.

2.2 Basic overview of the Fox and
Hey algorithm

The nature of the algorithm requires that you have
square matrices and a perfect square of processes
involved. Furthermore the matrix rank must be
evenly divisible by the square root of the process
count. With these two constraints the matrices in-
volved can be evenly distributed in “patches” across
all processes involved. The overall matrix compu-
tation is divided into stages. Assuming there are 9
processes involved we have a 3x3 process grid and
evenly distributed patches of matrices A and B.

The first stage involves broadcasting the diago-
nal “patch” of matrix A in each row. You thus need
a row communicator for each of the 3 rows in our 3x3
grid. The first row will broadcast the A1,1 patch, the
second row will broadcast the A2,2 patch, and the
third row will broadcast the A3,3 patch. On each
process the broadcasted patch of A is multiplied by
the patch of B currently held on that process. Once
the multiplication is done then the B patch is rolled
up in the column of the process grid. You need a col-
umn communicator for each column of the process
grid. The rolling is accomplished by using a call to
MPI sendrecv.

The next stage broadcasts the patch of A to the
right of the last patch sent and that is multiplied by
the rolled B matrix now on that process. When you
look to the right for A and roll B you have to wrap
in the processor grid space. In this specific example,
there are 3 stages so that all patches of A are mul-
tiplied by all patches of B which are summed into

2

CUG 2009 Proceedings

a patch of Ccomputed. This is why the Fox and Hey
algorithm is also known as the Broadcast, Multiply,
and Roll algorithm. In general if q is the square root
of the number of processes then there are q stages
and one patch per process or q2 patches for each ma-
trix involved. In checking the difference norm it is
straightforward to generate the patch you are sup-
posed to have in each process which should be zero
(c.f., Equation 4). Furthermore you can sum the
difference norm for each patch to a single number
which should also be zero. It is zero when every-
thing works and in accounting for round off error it
is usually 1010 or less.

2.3 The single process multiply com-
ponent

In each stage the matrix multiplication that occurs
concurrently in each process can utilize any arbitrary
“serial” matrix multiply. Bugget allows the choice
of:

• simple 3 loops of equation 1 in either C or For-
tran

• the daxpy rearrangement in either C or For-
tran

• a cache blocked version of the two above in C
or Fortran

• OpenMP parallelized versions of each of the
above.

• a dgemm call provided by any optimized li-
brary.

any one choice is made at run time. There are a total
of 17 different choices for the serial matrix multiply
algorithm.

The diversity of the implementation allows us to
explore the programming model space we targeted
for using both C and Fortran as well as for hybrid
mixed MPI and OpenMP codes. The analysis com-
putes the standard deviation of the time for each
instance of the fox and hey algorithm and identifies
which processes are out of the specified range of the
average time. This tolerance can be set at run time.
The percentage of peak performance is computed
as well. Some observations of running the various
algorithms are evident from utilizing the code on
Jaguar. The library call is always faster than any
of the source code implementations and produces
greater than 80% of peak performance. The blocked

source code implementation is slightly faster than
the daxpy rearrangement for smaller matrices and
moderately faster for larger matrices. The simple
three loops is always the slowest implementation.
Fortran and C implementations of the same algo-
rithm perform the same as long as you let the C com-
piler know that there are no dependencies among the
pointers to the matrices passed into the serial matrix
multiply routine.

3 Utilization

The use of Bugget for finding slow nodes was a
side effect of exploring programming models on the
XT system. Under catamount users who had stat-
ically balanced code noticed a run time variability
that could not be explained by time propagation in
the collective communication space. Depending on
which set of nodes they were allocated the code con-
sistently ran 10% to 15% slower. We noticed the
same behavior in some of the Bugget runs. Since
we could tune the time for Bugget runs trivially, we
decided to use it as the diagnostic for finding slow
nodes instead of using HPL or a real user applica-
tion.

By exploring this further the nodes that we iden-
tified were those that had many single bit memory
errors on a memory chip on a given socket. Once we
converted to the Cray Linux Environment (CLE) we
noticed a similar behavior but the slowness could
not always be attributed to single bit memory er-
rors. After further analysis, it was determined that
we had bad memory controllers not running at the
right frequency.

The fact that slow nodes exist and can be iden-
tified with Bugget is the goal of the work we have
done with the software. In “slow node finding mode”
(SNF mode) we simply run an individual serial ma-
trix multiply on all processes involved. Through ex-
perimentation we learned that if a node was going
to be slow it could be identified by running a single
process on the socket. If a socket is “slow” it is slow
whether you run 1, 2, 3, or 4 processes on the given
socket. In the XT4 partition of Jaguar there is only
one socket per node. On the XT5 partition there are
two sockets per node. You only need to make sure
you deploy one running Bugget process per socket
to identify the slow components.

By varying the algorithm and matrix size default
choices for SNF mode were determined they are ma-
trices of rank 3565, using the C implementation of

3

CUG 2009 Proceedings

the daxpy rearrangement with a 1x1 process grid.
Using a larger process grid would identify the group
of nodes but by using the 1 process grid we can eas-
ily identify the failing socket or node. This runs in
about 100 seconds and reliably finds the slow nodes
if they exist. The mechanism required to find the
slow nodes involves having a large number of nodes
to run on and assumes that the majority of those
nodes are okay. If all are slow then the code will not
appropriately identify the slow nodes. The identifi-
cation is based on the statistics collected over all the
sockets involved in the computation.

To facilitate SNF mode work with Bugget the
XT4 partition is divided into sets that are of the
same kind of hardware. In the Jaguar XT4 par-
tition we have all the same kind of opteron chips
but we have some nodes with 800Mhz memory and
some with 667 MHz memory which will lead to a
wider distribution over the computed set of pro-
cesses. We have made the sets such that they include
only 800MHz memory or 667MHz memory. On the
XT5 partition the nodes were identified in columns
and rows. This grouping is important in that we can
run Bugget jobs over sets or columns without hav-
ing to pin a whole in our scheduling for full machine
run.

We have to mitigate the dynamic nature of the
machine. We currently submit jobs that run either
daily or weekly on the machine depending on the real
user load and the level of instability we are seeing on
the system. We use either a C based code to mon-
itor this or a series of c-shell scripts that take care
of generating the batch script required. We gather
information from the Tourque/Moab tools to know
how many nodes are active in either a set or col-
umn on the machine. Scripts are generated based
on this information. Between the time the Bugget
script is submitted and when it gets actually released
to run the number of nodes available in a given set
or column may change. We have monitoring scripts
that handle renewing a job that has a different node
count for a set or column. This happens as nodes fall
out as well as when nodes get recovered from a re-
boot or hardware maintenance period. These same
monitoring mechanisms also keep track of the out-
put of 100 different instances of these Bugget jobs.
If needed we can track over time how things have
changed from run to run.

In addition to the “scheduled” runs that we do
to facilitate timely identification of bad nodes users

have access to the Bugget software via a module.
Once the module is loaded they may run the bi-
nary in any way they desire. There is a conve-
nience script that will run Bugget on the allocated
processes in SNF mode; the name of this script is
bugget my nodes.

4 Results

The results are tabulated for each group and overall
for all groups. As an example here is the output1

for a job running 8 processes on each node with a
total of 400 process using a group of 100 processes.
There are 4 groups that will eventually average the
statistics. The dgemm library call was the matrix
multiply algorithm used in the serial but concurrent
component of the Fox and Hey algorithm and this
was run on the XT5 partition.

aprun -n 400 -N 8 bugget q 10 r 59000 a dgemm
Bugget MPI Version 2

rank = 59000
algorithm is 9: DGEMM
group nproc = 100 (q=10)
total number of processors allocated = 400
4 groups of size 100
Number of groups: 4
Per-processes over all groups of any size:
Minimum Memory: 1593.48 MB = 1.56 GB
Average Memory: 1593.48 MB = 1.56 GB
Maximum Memory: 1593.48 MB = 1.56 GB

Minimum Patch Rank: 5900
Maximum Patch Rank: 5900

Rank 0 is on nid00163:c0-1c2s0n3
(core affinity = 0)

Rank 1 is on nid00163:c0-1c2s0n3
(core affinity = 1)

Rank 2 is on nid00163:c0-1c2s0n3
(core affinity = 2)

Rank 3 is on nid00163:c0-1c2s0n3
(core affinity = 3)

For Groups that have more than one process

Group 0 Statistics (group size:100)
Min fox Time: 532.187 Min Norm: 4.489e-12
Ave fox Time: 535.956 Ave Norm: 9.382e-12

1Modified to fit this paper format. The actual output is 90 characters wide.

4

CUG 2009 Proceedings

Max fox Time: 539.536 Max Norm: 1.391e-11
STD DEV Time: 3.228e-01 STD DEV : 4.893e-13

Group 1 Statistics (group size:100)
Min fox Time: 533.196 Min Norm: 4.489e-12
Ave fox Time: 535.953 Ave Norm: 9.382e-12
Max fox Time: 538.411 Max Norm: 1.391e-11
STD DEV Time: 1.487e-01 STD DEV : 4.893e-13

Group 2 Statistics (group size:100)
Min fox Time: 533.072 Min Norm: 4.489e-12
Ave fox Time: 536.238 Ave Norm: 9.382e-12
Max fox Time: 538.365 Max Norm: 1.391e-11
STD DEV Time: 6.824e-02 STD DEV : 4.893e-13

Group 3 Statistics (group size:100)
Min fox Time: 532.661 Min Norm: 4.489e-12
Ave fox Time: 536.054 Ave Norm: 9.382e-12
Max fox Time: 537.984 Max Norm: 1.391e-11
STD DEV Time: 1.830e-01 STD DEV : 4.893e-13

Stats over all procs in a group of size: 100
(100:400:r=59000:p=9.2GF:DGEMM)

Min fox Time: 532.19 (-2.6) GF(7.7) PP(83.9)
Ave fox Time: 536.05 (0.0) GF(7.7) PP(83.3)
Max fox Time: 539.54 (2.4) GF(7.6) PP(82.8)
Max-Min Time: 7.35 (5.0)
STD DEV Time: 1.460e+00

Min Norm: 4.489e-12 (-2.3)
Ave Norm: 9.382e-12 (0.0)
Max Norm: 1.391e-11 (2.1)
STD DEV : 2.150e-12

out 127: 273 of 400 w/in 1.0-sig (68.2%)
out 20: 380 of 400 w/in 2.0-sig (95.0%)
out 0: 400 of 400 w/in 3.0-sig (100.0%)
Sigma Threshold: 4.2 sec
Time Threshold: 0.333 sec

Total reported bad sigma nodes: 0 of 400
nodes tested.

Global time: 545.683 seconds

All groups of size greater than 1 print individual
group statistics and all groups of the same size pro-
vide final statistics for the job. Inspection of the
output shows that the per process memory utiliza-
tion (1.5 GBytes) is constant since all groups are
of the same size. The core affinity is printed out for
the first 4 processes showing that as expected from

the aprun command the processes are fully packed.
The individual group statistics show a normal tim-
ing spread for this type of calculation. The summary
statistics show an even distribution around the av-
erage time. The minimum time is 2.6σ below the
average and the maximum time is 2.4σ above the
average. The global maximum/minimum time dif-
ference is 7.3σ. The percentage of peak performance
is 82.8% for the maximum time of all 4 instances run
in this job and the performance was 7.6 Gflops per
process. This job identified no bad nodes that are
greater than 4.2σ. The default thresholds have been
set empirically but can be set by the user at run time.
Comparing the overall maximum time for the algo-
rithm and the global timing the overhead for setting
up the computation and the analysis is 6 seconds or
1%.

The next output is run in the SNF mode (e.g., -f
option) on column 10 of the Jaguar XT5 partition.
This demonstrates what is seen when bad nodes are
identified.

aprun -n 1408 -S 1 bugget -f
Bugget MPI Version 2

rank = 3565
algorithm is 2: DAXPY
group nproc = 1 (q=1)
total number of processors allocated = 1408
1408 groups of size 1
Number of groups: 1408
Per-processes over all groups of any size:
Minimum Memory: 581.78 MB = 0.57 GB
Average Memory: 581.78 MB = 0.57 GB
Maximum Memory: 581.78 MB = 0.57 GB

Minimum Patch Rank: 3565
Maximum Patch Rank: 3565

Rank 0 is on nid00032:c0-0c1s0n0
(core affinity = 0)

Rank 1 is on nid00032:c0-0c1s0n0
(core affinity = 4)

Rank 2 is on nid00033:c0-0c1s0n1
(core affinity = 0)

Rank 3 is on nid00033:c0-0c1s0n1
(core affinity = 4)

Stats over all procs in a group of size: 1
(1:1408:r=3565:p=9.2GF:DAXPY)

Min fox Time: 102.173 (-0.8) GF(0.9) PP(9.6)
Ave fox Time: 103.424 (0.0) GF(0.9) PP(9.5)

5

CUG 2009 Proceedings

Max fox Time: 120.982 (11.6) GF(0.7) PP(8.1)
Max-Min Time: 18.809 (12.4)
STD DEV Time: 1.516e+00

Min Norm: 1.052e-12 (0.0)
Ave Norm: 1.052e-12 (0.0)
Max Norm: 1.052e-12 (0.0)
STD DEV : 0.000e+00

out 20: 1388 of 1408 w/in 1.0-sig (98.6%)
out 20: 1388 of 1408 w/in 2.0-sig (98.6%)
out 10: 1398 of 1408 w/in 3.0-sig (99.3%)
out 10: 1398 of 1408 w/in 4.0-sig (99.3%)
out 10: 1398 of 1408 w/in 5.0-sig (99.3%)
out 10: 1398 of 1408 w/in 6.0-sig (99.3%)
out 10: 1398 of 1408 w/in 7.0-sig (99.3%)
out 10: 1398 of 1408 w/in 8.0-sig (99.3%)
out 10: 1398 of 1408 w/in 9.0-sig (99.3%)
out 10: 1398 of 1408 w/in 10.0-sig (99.3%)
out 8: 1400 of 1408 w/in 11.0-sig (99.4%)
out 0: 1408 of 1408 w/in 12.0-sig (100.0%)
Sigma Threshold: 4.2 sec
Time Threshold: 0.333 sec

rank 762 time: 120.597
Sigma: 11.329 Delta Time: 17.173 sec

rank 762 Node: nid00413:c0-4c0s7n1

rank 763 time: 107.718
Sigma: 2.833 Delta Time: 4.294 sec

rank 763 Node: nid00413:c0-4c0s7n1

rank 764 time: 120.982
Sigma: 11.583 Delta Time: 17.557 sec

rank 764 Node: nid00414:c0-4c0s7n2

rank 765 time: 107.609
Sigma: 2.760 Delta Time: 4.184 sec

rank 765 Node: nid00414:c0-4c0s7n2

rank 766 time: 120.963
Sigma: 11.571 Delta Time: 17.539 sec

rank 766 Node: nid00415:c0-4c0s7n3

rank 767 time: 107.577
Sigma: 2.739 Delta Time: 4.152 sec

rank 767 Node: nid00415:c0-4c0s7n3

rank 768 time: 120.540
Sigma: 11.291 Delta Time: 17.115 sec

rank 768 Node: nid00416:c0-4c1s0n0

rank 769 time: 107.369
Sigma: 2.603 Delta Time: 3.945 sec

rank 769 Node: nid00416:c0-4c1s0n0

rank 770 time: 120.727
Sigma: 11.415 Delta Time: 17.302 sec

rank 770 Node: nid00417:c0-4c1s0n1

rank 771 time: 107.699
Sigma: 2.820 Delta Time: 4.275 sec

rank 771 Node: nid00417:c0-4c1s0n1

rank 772 time: 120.146
Sigma: 11.032 Delta Time: 16.721 sec

rank 772 Node: nid00418:c0-4c1s0n2

rank 773 time: 107.145
Sigma: 2.455 Delta Time: 3.721 sec

rank 773 Node: nid00418:c0-4c1s0n2

rank 774 time: 119.935
Sigma: 10.893 Delta Time: 16.511 sec

rank 774 Node: nid00419:c0-4c1s0n3

rank 775 time: 107.275
Sigma: 2.541 Delta Time: 3.851 sec

rank 775 Node: nid00419:c0-4c1s0n3

rank 776 time: 120.926
Sigma: 11.546 Delta Time: 17.502 sec

rank 776 Node: nid00420:c0-4c1s1n0

rank 777 time: 107.679
Sigma: 2.807 Delta Time: 4.254 sec

rank 777 Node: nid00420:c0-4c1s1n0

rank 778 time: 120.081
Sigma: 10.989 Delta Time: 16.657 sec

rank 778 Node: nid00421:c0-4c1s1n1

rank 779 time: 107.173
Sigma: 2.473 Delta Time: 3.748 sec

rank 779 Node: nid00421:c0-4c1s1n1

rank 780 time: 120.134
Sigma: 11.024 Delta Time: 16.710 sec

rank 780 Node: nid00422:c0-4c1s1n2

rank 781 time: 107.081
Sigma: 2.413 Delta Time: 3.657 sec

6

CUG 2009 Proceedings

rank 781 Node: nid00422:c0-4c1s1n2

Total reported bad sigma nodes: 20 of 1408
nodes tested.

Global time: 125.376 seconds

Inspection of the output shows that defaults were
used for the input parameters as outlined above.
The per process memory requirements are modest.
Core affinity of the first four process shows that 2
processes one on each socket are placed appropri-
ately (using the -S 1 argument). The timing spread
is 18.8 seconds and is an indicator that there is a
problem. The spread shows that the maximum time
is 11.6σ from the average. The specific rank out-
put shows that rank 762 is 11.3σ from the average
and the node id and cray node name are printed.
Since rank 762 and rank 763 are in the same node
Bugget will print out both socket’s information if ei-
ther socket is “bad.” Note that both sockets are not
“equally” bad. Again the overhead for setting up
the calculation and doing the analysis is relatively
small.

5 Future Directions

The code has evolved over the last year to do bet-
ter analysis and be more informative. There are a
few things that need to be implemented to provide
more information to users. Right now an error sta-
tus is returned if there are any bad nodes which can
be used to abort the job. What is really needed is
a mechanism to generate a node list that excludes
any identified nodes. This assumes that the appli-
cation can run on an arbitrary number of proces-
sors. We also plan to augment the code to keep
track of the compute and communication timings in
the algorithm. A histogram based set of data for all
aggregated timings will be introduced. Finally, for
completeness Pthreads based implementations of the
matrix multiply kernels should be developed as well
as interfaces to thread parallel libraries.

Acknowledgments

This research was conducted in part under the aus-
pices of the Office of Advanced Scientific Comput-
ing Research, Office of Science, U.S. Department of
Energy under Contract No. DE-AC05-00OR22725
with UT-Battelle, LLC. This research used resources

of the Leadership Computing Facility at Oak Ridge
National Laboratory, which is supported by the Of-
fice of Science of the U.S. Department of Energy
under Contract No. DE-AC05-00OR22725 with UT-
Battelle, LLC. Accordingly, the U.S. Government re-
tains a non-exclusive, royalty-free license to publish
or reproduce the published form of this contribu-
tion, or allow others to do so, for U.S. Government
purposes.

About the Authors

Ricky A. Kendall is the Group Leader for the Sci-
entific Computing team in the Leadership Com-
puting Facility at Oak Ridge National Laboratory.
His team provides the liaison support for users to
assist them in adapting applications for the Cray
XT systems and to help the science teams to ef-
fectively utilize the resources provided. He can
be reached at Oak Ridge National Laboratory, PO
Box 2008 MS 6008, Oak Ridge, TN 37831-6008 or
kendallra@ornl.gov.

Don Maxwell is a Senior HPC System Adminis-
trator at Oak Ridge National Laboratory primarily
focused on the Cray XT series. He has been a key
member of past teams in bringing up new super-
computers for the LCF. He can be reached at Oak
Ridge National Laboratory, PO Box 2008 MS 6016,
Oak Ridge, TN 37831-6016 or maxwellde@ornl.gov.

Jeff Becklehimer is a Principal Engineer with
Cray Inc. He resides at Oak Ridge National Labo-
ratory and is involved in all aspects of the Cray XT
computers. He can be reached at jlbeck@cray.com

Cathy Willis is a Systems Engineer IV with Cray
Inc. She is assigned as a site analyst at Oak Ridge
National Laboratory and is involved in all aspects
of support of the Cray XT computers. She can be
reached at willis@cray.com.

References

[1] G. C. Fox, A. Hey, and S. Otto, “Matrix Al-
gorithms on the Hypercube I: Matrix Mul-
tiplication,” Parallel Computing, vol. 4, pp.
17 (1987).

[2] L. E. Cannon, “A cellular computer to im-
plement the Kalman filter algorithm” Ph.D.
dissertation, Montana State Univ., Boze-
man, MT, (1969).

7

CUG 2009 Proceedings

[3] K. K. Mathur and S. L. Johnsson, “Multi-
plication of matrices of arbitrary shape on
a data parallel computer.” Parallel Comput-
ing, vol. 20, pp. 919-951, (1994).

[4] E. E. Santos, “Parallel Complexity of Ma-
trix Multiplication.” J. Supercomp. vol. 25,
pp. 155-175, (2003) .

[5] C. L. Lawson, R. J. Hanson, D. R. Kincaid
and F. T. Krogh, “Basic Linear Algebra Sub-
programs for Fortran Usage.” ACM Trans.
Math. Soft. vol. 5, pp. 308-323, (1979).

[6] C. L. Lawson, R. J. Hanson, D. R. Kincaid
and F. T. Krogh, “ALGORITHM 539, Ba-
sic Linear Algebra Subprograms for Fortran
Usage.” ACM Trans. Math. Soft. vol. 5, pp.
324-245, (1979).

[7] J. J. Dongarra, J. Du Croz, S. Hammar-
ling and R. J. Hanson, “An Extended Set
of FORTRAN Basic Linear Algebra Subpro-
grams.” ACM Trans. Math. Soft. vol. 14, pp.
1-17, (1988).

[8] J. J. Dongarra, J. Du Croz, S. Hammarling
and R. J. Hanson, “ALGORITHM 656, An
Extended Set of Basic Linear Algebra Sub-
programs: Model Implementation and Test

Programs.” ACM Trans. Math. Soft. vol. 14,
pp. 18-32, (1988).

[9] J. J. Dongarra, J. Du Croz, S. Hammarling
and I. Duff, “A Set of Level 3 Basic Linear
Algebra Subprograms.” ACM Trans. Math.
Soft. vol. 16, pp. 1-17, (1990).

[10] R. C. Whaley, A. Petitet and J. J.
Dongarra, “Automated Empirical Op-
timization of Software and the ATLAS
project.” Parallel Computing. vol. 27,
pp. 3-35, (2001). Also available as Uni-
versity of Tennessee LAPACK Work-
ing Note #147, UT-CS-00-448, 2000
(http://www.netlib.org/lapack/lawns/lawn147.ps).

[11] R. van de Geijn and J. Watts, “SUMMA:
Scalable universal matrix multiplication al-
gorithm.” University of Texas, Department
of Computer Sciences, Tech. Rep. TR-95-13,
April (1995).

[12] R. C. Agarwal, F. G. Gustavson, and M.
Zubair, “A high performance matrix multi-
plication algorithm on a distributed-memory
parallel computer, using overlapped com-
munication.” IBM Journal of Research and
Development, vol. 38, no. 6, pp. 673-681,
(1994).

8

CUG 2009 Proceedings

	Introduction
	Bugget
	What does Bugget do?
	Basic overview of the Fox and Hey algorithm
	The single process multiply component

	Utilization
	Results
	Future Directions

